بسم الله الرحمن الرحيم

PRESENTATION ON

GEOTHERMAL

BY

"ECONOMIA"

PRESENTED BY

MUHAMMAD ASLAM AZAD MANAGING DIRECTOR OF AGECO (PVT) LTD.

MEMBER OF ASHRAE (AMERICAN SOCIETY OF HEATING, REFRIGERATING & AIR-CONDITIONING ENGINEERS, INC)

TOPIC OF PRESENTATION

- Introduction of Company.
- ***** Technology of Geothermal.
- **Structure / Placing of Geothermal Hot Water Geyser.**
- Structure / Placing of Geothermal Hot Water Boiler for Central Heating system.
- **Structure / Placing of Geothermal Split A/C.**
- Structure / Placing of Geothermal Self Contained Package A/C.

THE PIONEER OF RISKLESS & ENERGY SAVING CENTRAL HEATING SYSTEM

INTRODUCTION OF COMPANY

- The company was established with the name of "AGECO" in 1980.
- Registered as AGECO (Pvt.) Ltd, In 1988.
- We have completed **50 HVAC Projects** in Government and Semi Government sectors all over the country till 1996.
- We are The Pioneers in Introducing Designing and Manufacturing of "ECONOMIA" Riskless & Energy Saving Central Heating System in Pakistan Since 1997 and to adopt same pattern of heating which has been used in Europe and other Countries in the World.
- We have since installed this system successfully more than 25000 Locations including Defence Offices, Hospitals, Commercial Buildings, Guest Houses, Hotels & Residences all over the country where ambient temp is up to (-)25 °C and altitude up to 14000ft.
- We have extended our manufacturing range:
 - in 2004 Central Air Conditioning Chiller up to 30 TR, AHU up to 50 TR and FCU Decorative/Concealed etc.
 - in 2006 Clean Room HVAC System for pharmaceutical industries.
 - in 2009 Solar Street Light, Solar Garden Light and Solar home System.
 - in March 2011 Vertical Axial Wind turbine from 2 KW to 10 KW 100% indigenous.
 - in July 2011 Geothermal Heat Pump Units.
 - * Hot Water Geyser.
 - * Central Heating Boiler.
 - * Free Discharge/Duct Type Self Contained Package A/C Unit.
 - * Split A/C Unit.

Future focus to introduce other green energy technology to support Pakistan and people of Pakistan.

TECHNOLOGY OF GEOTHERMAL

We are pleased to introduce newly developed Geothermal Unit which is 100% indigenous and locally manufactured by ECONOMIA.

How it Works.

The unit uses ground energy, the weather effect from (+)50 °C to (-)40 °C is nil below 5ft ground surface and from (-)5 to 20ft below ground level the temperature remains at 25 °C (\pm)2 °C all around the year. To provide heating/hot water through refrigeration cycle requires 8 °C to meet the nominal design capacity. When using ground energy at 25 °C (\pm)2 °C electric running cost reduce up to 80% and there is no de-rating factor upon change of ambient condition. The operation cycle is shown on literature.

Egg Geothermal Heating and Cooling uses the earth's constant temperature to achieve EER's (Energy Efficiency Ratings) in the 30's. The heating COP (Coefficient of Performance) is approaching 5. A 5 COP indicates that the Egg geothermal systems are producing 5 units of energy for one unit of electricity consumed and other 4 come from earth. That's why this technology is called "renewable".

The geothermal pump system reaches fairly high coefficient of performance (CoP), 3-6, on the coldest of winter nights, compared to 1.75-2.5 for air-source heat pumps on cool days. Ground source heat pump (GSHPs) are among the most energy efficient technologies for providing HVAC and water heating. Actual CoP of a geothermal system which includes the power requires to circulate the fluid through the underground tubes that can be lower than 2.5. The setup costs are higher than for conventional systems, but the difference is usually returned in energy savings up to 3 years. System life is estimated at 25 years for inside components and 50+ years for the ground loop. As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity, with an annual growth rate of 10%.

How much Energy saving by Geothermal Vs Existing System

Example-1: Hot Water Geyser 30 Gallon in Winter Season.

Natural Gas	LPG	Wood/Oil	New Proposed Geothermal System
Rs.1,000/- to	Rs.1,500/- to	Rs.2,000/- to	Rs.150/- to
Rs.2,000/- per month.	Rs.3,000/- per month.	Rs.10,000/- per month	Rs.300/- per month

Example-2: Hot Water Boiler capacity 60,000 BTU for Heating System 12 Hrs usage.

Natural Gas	LPG	Kerosene/Diesel	Electricity	New Proposed Geothermal System
Rs.8,000/- to	Rs.10,000/- to	Rs.12,000/- to Rs.25,000/- per month ½ ltr/hr x	60,000 BTU/3,400 = 17 KW x Rs.10/KW =	660 W/hr x 12 hrs = 7,920 W = 7.9 KW
Rs.10,000/- per	Rs.16,000/- per	12 hrs = 6 ltr x Rs.100/ltr = Rs.600/day x 30 days =	Rs.170/hr x 12 Hrs = Rs.2,040/day x 30	x Rs.10/KW = Rs.79/day x 30 days =
month.	month.	Rs.18,000/- per month	days = Rs.61,200/- per month	Rs.2,370/- per month

Example-3: Split A/C for Cooling capacity 18000 BTU.

Existing Air Cooled Split Nominal Capacity 1.5 TR at 35 °C ambient.				2	Geothermal Split 5 °C (±) 2 °C at (-)3	A/C Maintain D ft Ground Level		
Ambient	35 ⁰C	40 °C	45 °C	48 °C		Ground Temp.	25 °C (±)2 °C	No de-rating as ground
Cooling Capacity	18000 BTU	17000 BTU	16000 BTU	12000 BTU	Tripping due to	Cooling Capacity	18000 BTU	temperature below 5 ft ground level remain same at all ambient
Amps	8.5	9	10.5	12	higher ambient	Amps	4.1	(+)50 to (-)40 °C.

1ST WORLD TECHNOLOGY VS LOCAL TECHNOLOGY

1 st world requirement is 100% Heating and 0 - 40% Cooling	Local requirement is 100% cooling and 10 – 100% Heating
1 st world placing of geothermal heat exchanger normally 5 KW to 20 KW for one central unit using PE pipe horizontally below 5 ft ground level as shown in below picture.	Local requirement mostly cooling and to meet the requirement vertical S.S heat exchanger perform better below 5 ft to 150 ft depend on type and size of unit maximum to 5 KW as shown in below picture.
Proposed for Heating System	Proposed for Cooling / Heating
A 3-ton slinky loop prior to being covered with soil. The three slinky loops are running out horizontally with three straight lines returning the end of the slinky coil to the heat pump.	 Direct exchange systems are significantly more efficient and have potentially lower installation costs than closed loop water systems. Copper's high thermal conductivity contributes to the higher efficiency of the system, but heat flow is predominantly limited by the thermal conductivity of the ground, not the pipe. The main reasons for the higher efficiency are the elimination of the water pump (which uses electricity), the elimination of the water heat exchanger (which is source of heat losses), and most importantly, the latent heat phase change of the refrigerant in the ground itself. While they require much more refrigerant and their tubing is more expensive per foot, a direct exchange loop is shorter than a closed water loop for a given capacity. A direct exchange system required only 15 to 30% of the length of tubing and half the diameter of drilled holes, and the drilling or excavation costs are therefore lower. Therefore, direct expansion is more feasible in smaller size only. However, we have selected S.S direct heat exchanger instead of copper in vertical refrigerant loop to avoid

exchanger being used are treated with epoxy and final

4

layer of lacquer to avoid oxidization.

vertical drilling, so this is the most common layout used wherever there is adequate land available. For illustration, a detached house needing 10kW (3 ton) of **heating capacity** might need 3 loops 120 to 180 m (390 to 590 ft) long of NPS $\frac{3}{4}$ (DN 20) or NPS 1.25 (DN 32) polyethylene tubing at a depth of 1 to 2 m (3.3 to 6.6 ft).

GEOTHERMAL HOT WATER GEYSER

GEOTHERMAL HOT WATER GEYSER Ground Energy Source Models: ECO-GES/GEY-30 30 GLN ECO-GES/GEY-50 50 GLN ECO-GES/GEY-100 100 GLN Wall Energy Source Models: ECO-WES/GEY-30 30 GLN ECO-WES/GEY-50 50 GLN ECO-WES/GEY-100 100 GLN 8 V V Manufacturer: ECONOMIA AGECO (Pvt.) Ltd. Head Office: 7868, First Floor, Hill View Plaza Blue Area, Islamahad Pakistan Tel: +92.51.282336, 2872988, 2273844, Fax: +92.51.2270126 E-mail:ageocogreenomia.com.pk, URL:www.economia.com.pk Eactory: 262, Kahuta Triangle Industrial Area, Kahuta Road, Islamabae

PLACING OF GEOTHERMAL HOT WATER GEYSER

Geothermal Hot Water Geyser Specification

Model			ECO-GES/GEY-30	ECO-GES/GEY-50	ECO-GES/GEY-10		
Storage Capacity Gallon		30	50	100			
Hot Water Output Gallons/Day		150	250	500			
	Capacity	HP	1/12	1/8	1/4		
Compressor	Running Current	Watts	50 - 65	90 - 125	180 - 220		
	Refrigerant	Type	R134a				
Automation			Di	gital Temperature Contro	xlier		
	Tank Body		Stainless Steel				
	External Body		G.I Powder Coated				
Material	Tank Heat Exchanger		Stainless Steel				
	Insulation		PU Injection				
Dimension	- Investment	HxWxD	64" x 18" x 18"	64" x 24" x 24"	64" x 36" x 36*		
Water Connection inch		3/4"	1-	1.25"			
Ground/Wall	Source Heat Exchanger						
Metazial			Stainless Steel				

Note: 1. The Nominal Capacity is based on 25 °C (±)2°C Temperature at (-) 5 - 20 Ft. below Ground level: 2. Per day output can increase by increasing size of compressor (optional).

GEOTHERMAL CENTRAL HEATING BOILER

PLACING OF GEOTHERMAL HOT WATER HEATING BOILER

GEOTHERMAL HOT WATER HEATING BOILER SPECIFICATION

Model			ECO-GEOTH-60	ECO-GEOTH-90		
Nominal Heating Capacity BTU/Hr			60000	90000		
Running	Current		Amps	4	6	
Power So	ource		V/Ph/Hz	220/1/50	220/1/50	
Refrigera	int type			R	22	
Control				Capilla	ry Tube	
		Height	mm/in	1200/48	1200/48	
Unit Dim	ension	Width	mm/in	600/24	600/24	
		Depth	mm/in	450/18	450/18	
Unit Weight Kg						
Sound Pressure Level dBA			58			
Compres	ssor					
Stage of	Capacity Cont	rol (BTU/Hr)		One Stage (Optional 0-100 with VFD)		
Hot Wate	er Heat Excha	inger				
Heat Ech	anger Type			Shell & Coil Type		
Pump	Water Flow	Rate	GPM	6		
Piping Installation Pipe Connection			mm/in	25.4/1		
Ground	Source Heat	Echanger				
Material			S.S Tube Coil			
Temperature Controller Type			Туре	Digital Microprocessor based		
Monitoring Ty			Туре	GSM / GPRS (Optional)		

Note: The Nominal Capacity is based on 25℃ (±)2℃ Temperature at (-) 5 - 20 Ft. below Ground level.

GEOTHERMAL SPLIT A/C

Model			ECO-GEO-SCP-12	ECO-GEO-SCP-1
Naminal Canadity	Cooling	BTU/Hr	12000	18000
Nominal Capacity	Heating	BTU/Hr	24000	36000
Dunning Current	Cooling	Amps	3.1	4.2
Running Current	Heating	Amps	4.0	5.3
Power Source		V/Ph/Hz	220V/1 I	PH/50 Hz
Refrigerant type			R-22/	R410a
Control			Capillary Tube	
	Height	mm/in	400/20	400/20
Unit Dimension	Width	mm/in	750/30	750/30
	Depth	mm/in	300/12	300/12
Unit Weight		Kg		
Sound Pressure Level		dBA	58	
Compressor		- Will		
Stage of Capacity Cont	rol (BTU/Hr)		One Stage (Optional 0-100 with VFD)	
Ground Source Heat	Echanger			
Material			S.S tube Coil	
Temperature Controller		Туре	Digital Microprocessor based	
Monitoring		Туре	GSM / GPRS (Optional)	

GEOTHERMAL SELF CONTAINED PACKAGE A/C

ECONOMIA

PLACING OF GEOTHERMAL SELF CONTAINED PACKAGE UNIT

Geothermal Self Contained Package Unit Specification

Model			ECO-GEO-SCP-12	ECO-GEO-SCP-1	
New York Connection	Cooling	BTU/Hr	12000	18000	
Nominal Capacity	Heating	BTU/Hr	24000	36000	
Design Course	Cooling	Amps	3.1	4.2	
Running Current	Heating	Amps	4.0	5.3	
Power Source		V/Ph/Hz	220V/1 F	PH/50 Hz	
Refrigerant type			R-22/	R410a	
Control			Capillary Tube		
	Height	mm/in	1200/48	1200/48	
Unit Dimension	Width	mm/in	600/24	600/24	
	Depth	mm/in	300/12	300/12	
Unit Weight		Kg			
Sound Pressure Level		dBA	58		
Compressor					
Stage of Capacity Control (BTU/Hr)			One Stage (Optional 0-100 with VFD)		
Ground Source Heat	Echanger				
Material			S.S Tube Coil		
Temperature Controller		Туре	Digital Microprocessor based		
Monitoring		Type	GSM / GPRS (Optional)		

Note: The Nominal Capacity is based on 25 C (±)2 C Temperature at (-) 5 - 20 Ft. below Ground level.

Comments to be Added

Thank You!